MORCOM International, Inc. -

Here's our world....

Here's who we are

- Founded in 1984 to provide equipment and services to clients in the Federal and commercial marketplace
- The company is a strong, stable, well funded firm with highly capable management and professional staff
- The company goes <u>beyond</u> supplying products. We provide services to support our products
 - Information systems development
 - Infrastructure planning
 - Network planning
 - Operations and maintenance support
 - Training

Here's more of who we are

- Since we are small, we are <u>highly responsive</u> and eager to engage...
- The company has the 8(a) certification vehicle allowing quick access for our products and services to Federal clients
- We not only build systems, but foster strong customer relations
- Morcom hires and retains the best technical and engineering talent who are available personally or online to understand and support your requirements

Here's what we do

- Provide a broad range of mission critical high technology communication products
 - Land mobile radio communications
 - Aeronautical radios
 - Weather information systems
 - Data collection systems
- Provide communication systems installation, operations support, maintenance and training services
- Conduct Information Technology (IT) equipment requirements analysis, design, and computer network support

Here's more of what we do

- We conduct engineering and feasibility studies using advanced technologies such as satellites and wireless components for the management of the environment
- We provide appropriate state-of-the-technology hardware and software for optimal performance to your requirements
- We are a total hardware and software system integrator
- We provide a worldwide network of representatives to install and support our systems
- We could provide vital interoperable communications links that bind our Homeland Security Infrastructure

Here are some of our products....

- Land mobile radio communications
 - Two-way transceivers
 - Mobile & base station antennas
 - Surveillance receivers and DF systems
 - Wireless WAN and LAN equipment
- Aeronautical Communications
 - VHF/UHF Transceivers
 - Automatic Terminal Information Service (ATIS) Systems
 - Air band antennas
- Weather information systems
 - Digital weather stations
 - Mobile weather system for HAZMAT applications
 - Weather information terminals (NOAA Port, WAFS etc.)

Here are some of our services

- Communication systems design
- Airport ground to air communications support services
- Weather information systems design
- IT hardware support and management
- Repair and programming of radio transceivers
- Hydro-meteorological system design and support
- Airport weather observation systems design and support
- ATIS system design and support for airports
- Export/Import consulting services

GOES DCS CDMA Over Lay Study

- Study Commenced September 2003
- Objective is to determine the feasibility of a coexisting CDMA design.
- Study includes theoretical, bench test equipment and over air tests
- Morcom is working in partnership with uCom.

Study is to Determine and Substantiate

- If a CDMA design that is of value to users can be supported with the TDMA / FDMA operation?
- How is the CDMA data flow to be integrated into DAPS I,II?
- What might be a DCP Cert Standard for CDMA?
- What would be an operational concept?

Study Links Include

DCP R

DCP I as a subset

Ground Rules

 Insignificant loss of performance on a properly operating DCP in the FDMA TDMA regime.

Added capability must be of significance.

Significance?

- Can support 1,000,000 messages per day of 500 bits each.
- Provides user advantages in:
 - Cost
 - Power
 - Message reliability
 - Ease of use
 - Eased Frequency Control
 - Eased time keeping (watch crystal)

CDMA Characteristics

- Resistant to interference
- Support Multiple User Access through coding signatures
- Makes use of the entire spectrum that is available, low density power spectra.
- Power sharing can be a statistical process
- Graceful performance degradation.

Spectral Examples GOES E & CDMA

Combined Spectrum

Frequency-Multiplexed TDMA Signals

(a) CDMA Signals and 4 TDMA Signals

Figure 8 Spectral Efficiency of DS-CDMA/TDMA Frequency Sharing System

Spreading 1

- Current 100 BPS uses a spreading ratio of 2 by employing Manchester Clock Encoding
- Spreading is the multiplication of the data or symbol rate by a synchronous code
- This code has been called the "Signature Code"
- The RX uses apriori knowledge of the code to recover the signal

Spreading 2

- TX power is spread in direct proportion to the spreading ratio across the spectrum
- The spreading ratio is the number of bits by which each data symbol is multiplied
- Interference rejection is proportional to the square root of the spreading ratio.
- This rejection is both from other CDMA TXes and FDMA / TDMA TXes

And So?

- Maximize spreading ratio by
 - Maximum spectrum use
 - Minimum Data Rate
- Results In
 - A maximum number of simultaneous CDMA "Channels"
 - Least interference with FDMA TDMA
 - Least interference from FDMA TDMA

What Are Some Numbers?

- CDMA Initial EIRP of 37 dBm
- Spreading ratio of 2000 (-33 dB)
- Data Rate of 100 BPS
- 50 Simultaneous TXes (+17 dB)
- Results in a noise floor 29 dB below a 1200
 BPS TX at 50 dBm EIRP
- This is worst case and about 10 dB below the current noise floor.

Hypothetical Operational Concept

- Each TX has a unique code (Tied to ID?)
- Assume a 15 minute TX interval is desired.
- Each message is limited to <4.5 seconds
- Assume 50 simultaneous TXes
- Each TX sends on a uniform distribution of TX times
- Results in 10000 DCPs (50 X 900/4.5)
- Sending 960000 messages per day

The Good, Bad, and Ugly

Good

- Minimum time keeping capability
- Eased frequency control
- Power consumption to 10s of milliwatts

Bad

Data rate will be modest 100 to 200 BPS,
 careful use of format and sensor data needed.

Ugly

Statistical System Management

Processing

Initial restricted to BPSK

Interference rejection from spreading ratio only

Future Improvements?

Improvements
 are susceptible
 to EXTREME
 signal
 processing

Final Phase of Project

CDMA Over lay System Test Using Microcom DRGS or Wallops CDA